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A space containing an explosive substance is provided with a conical cutout having its ver- 
tex at point 0. As the result of ignition at point 0 a detonation wave and the motion of pro- 
ducts of explosion behind it are generated. Presence of the hollow cone originates a rare- 
faction wave bounded by a free surface. The behavior of gas-dynamic functiona in this rare- 
faction wave is analyzed in this paper in terms of the cone vertex angle and of the adiabr 

tic exponent of products of explosion. 
Th e products of the explosion initiated by ignition at point 0 of the space containing aa 

explosive substance, and provided with a cutout in the form of a hollow cone S with its var- 

tex at point 0 are bounded by the detonation wave front and the free surface. The detonation 
wave front propagates with constant velocity D. At an instant t the detonation wave front ia 
represented by that part of sphere Q of radius DC having its center at 0, which is bonnded 
by its intersection with cone S along circle ‘Wt. In the following the form of the free surface 

which depends on the adiabatic exponent x of the products of explosion and on the cone S 
vertex angle y will be determined. 

Critical values of angle y,(X) will be determined for each value of the adiabatic expo- 

nent X. If exponent x 2 2 and angle y> V,(X) f conversely ~5 2 and ylyr(“ll then at tbr 

instant t the free surface is defined by a cone the base of which coincides with circle M,, 

and its vertex lies on the axis of the cone S. In all other cases the free surface consists of 
a truncated cone adjoining the detonation wave front, and of a surface of revolution genera- 
ted by a line of nonzer6 curvature. The latter indicates the onset of a stream with a base 
expanding with time. 

1. Statement of problem. The motion of gas behind a detonation wave propaga- 
ting from the ignitipn initiation point 0 (the coordinate origin) in a space provided with a 
conical cutout (the cone axis is defined by x = 0, y = 0, I S 0, and y is the angle between 
the cone axis and its generatrixl and filled with an explosive substance, is cylindrically 
symmetric and self-similar. In vi w of this cylindrical aymmetry it is wfficient to consider 
the flow in the rz -plane (r = * x + y 1. The number of independent variables in the equations 
of gas dynamics which define tbe flow by virtue of self-similarity1 may be reduced to two, 
viz. e= r/t, 7) = x/t. The unknown fnnctions are: the density p and two velocity componenta 
V, and I’, along the axes I and I. The pressure p of the products of explosion ia defined by 
the equation of state 

p=xp* W) 
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where x is the adiabetic exponent. At the instant immediately preceding ignition 

t c 0, p=o, t’r=l~z=tft P=scI(x+ 1) (i.2) 

The detonation wave satisfies the Jonguet condition, and at instant t is represented by 
the part of a sphere of radios DT (D = x + 1) b ounded by the corresponding cone section. 

The arc of circle AA’of radius D with its center at 0 and symmetric relative to the Taxis 

corresponds in the [r)-plane to the detonation wave front. The angle between radius OA (or 

OR ‘) and the semi-axis rl (TS 0) is obviously eqttal to y. For the purpose of this analysis 

it is convenient to introduce polar coordinates a end 8 with the origin at point A 

e = It sinyta cos (y + dl; 6), 

q = -D co3 y f a sin (y $- l/r; 6) (h =- (x 1- I) / (z - 1)) (1.3) 

and velocity components uo and ~8 

where fi 8 is the angle between the half-line emanating from point A and the direction of 
the detonation wave front at that point, CL is the distance from point A along the half-line, 

and u. snd.vg are the velocity components along the half-line emanating from point A and a 

line parpendicolar to the latter respectively. 

‘lbe Eqs. of gas dynamics in terms of these variables are of the form 

+ 
oe COS (r $- I/K6) - VI sin (y +- vh6) + D sin y 

-~_~--...--_-.--~L-.__ >=o 
U COS (7 + l/h 6) t.iD sin y I 

Here fis the sqaare of the velocity of sound. 

A domain C in the (q-p1 ane in which the flow behind the wave coincided with the apher 

ically symmetric solution derived by Zel’doviclr f2] was determined in paper flf. This do- 

main is bounded by the detonation wave fmnt AA’and two symmetric segments of cbaracterc 

istics AE and A’E‘. For sufficiently large angles y,(y > y,) points B and B’coincide, and 

lie on tbe pxis. Otherwise (y < y,), the shock wave front BB’which connects points A and 
B’(Fig. 1, o and b) also penetrated domain G. The magnitnde of angle yX depends on x 

-.-. 

Fig. 1 

only, and is determined by numerical integration. 

In the following asymptotic behavior of gas- 

dynamic functions is analyzed outside domain G, 

namely, in the vicinity of point A and of the free 

boundary emanating from that point (because of 

symmetry there is no need to repeat this analy- 
sis for point A’). The presence of a hollow cone 

creates at point A a centered rarefaction wave 

bounded by the free bonndary, i.e. by a line along 

which p = 0. This wave corresponds as regards 
its predominant term to the Prandtl-kfeyer soln- 
tion 



Da = x JKsin& cI =%cos& f=x*co30 W-9 

while the half-line emanating from point A at the angle % L/i;” corresponda in the &I-plane 
to the detonation wave front(*). Characteristic AB which bounds domain C doso not how- 
ever belong to the centered rarefaction wave, because the values of parametera along chnr 
actsristic A8 coincide with those of (1.6) at the point A only. This showa that in the immr 
diate vicinity of characteristic AB the solution structure is aomswhat different when ff is 
of the order of a3 (the equation of characteristic AB is u =: a/st tit-’ 6% Namely, there 
exists in the vicinity of the point A, between the characteristic AB and the rarefaction 
wave, a transition zone where the solation is of the form 

Da = us* (9)s + ua* ($)85 i- . . . , V& = 0% (q) f “6, (@6’ -I- ..- 

f = to (44 + tl (wn + -a-. J, = a / 6 (a -, 0, 6 -+ 0) (1.7) 

Expression (1.7) corresponds to a split of singularity in the neighborhood of point u = 0, 
8 i: 0 in the a&plane with the upper boundary $ = $, = U&r xhr.6 being the characteristic 
AB, and the lower boundary $ = 0 indicating a transition to finite values of 6 (Fig. 2). Asymp- 

totics (1.7) were derived and anal zed in (11. Values compated 
from Fonuulaa (1.7) coincide for J = t&o with those of the 
spherically symmetric solution along characteristic AR, while 
for $ close to $o ($ - $o < 0) a compression wave is geasra- 
ted which for y < yx becomes a shock wave. For # + 0 (1.7) 
matches with the Praudtl-Meyer soIution (1.6). 

Fig. 2 

follows :- 

With the use of asymptotica (X.7) the solution for the via- 
inity of point A will be analyzed in Section 2 also for finite 
values of 6 (0 < 8 < Hs) when $ + 0. Thus the complete naigh- 
borhood of point A (U is small) consists of three areas ss 

first, in which the solution coincides with the spherically symmetric aolation, it is boun- 
ded by the detonation wave front 

and characteristic AB, 
second, in which Q is of the order of a3 

w/8& xh’-’ > t# = a/P > 0 

this is the transition from a rarefaction to a compression wave, 
third, the area of the rarefaction wave terminating at the free boundary which corrsa- 

ponds to finite valuea of $ (0 < 6 < 34s). 
The gas dynamics in the neighborhood of point A analyzed in Section 2 define the end 

part of the free boundary AK. From the Prandd-hfeyer solution (1.6) follows that for small 
values of a the free boundary coincidea in the tW-plans with half-line 81 XR. Let N be 
the intersection point of tbia half-line with the y-axis with coordinates 6 = %n, u I as 
where 

a&==-- 
(X+i)siny 

(1.Q 

Line AK obviousIy coincides in the &plane with the free boundary rectiIinear part. 
Point K, depending on angle y and exponent X, either coincides with N, or lies within ssg* 
ment AN. 

It will be shown in Section 3 that when x ;1: 2 and y&y, (x) (conversely XS 2 and pj: 
< ys (x) ), then point K coincides with point N. Otherwise point K lies strictly wfthia sag- 
ment AN (Fig. 1. o and b). Angle yk (xx) i a defied by Eq. 

*) It is assumed that & < 9 (i.e. x > 1.25) with which %\liiW < 1.5s. sad the rarcfaction 
wave does not overtake the detonation wave front. 
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N o t e + i If the characteristics passing through any arbitrarily small neighborhood of 
pofnt P do not intersect a sufficiently small neighborhood of point A, then point P does not 
belong to AK. Point N is reached by the flow line which is the Taxis. Hence, point N can- 

not belong to AK, and the coincidence of AN and AK is to be interpreted as a coincidence 

of the half-intervals AN and AK. Position of the free boundary and the gas dynamics in its 

vicinity, but outside AK can only be determined by a numerical computation of partia1 dif- 

ferential equations. 

2. Aeymptotics of gas-dynamic functions in the neighborhood of 
point A. At this point u = 0, and the magnitude of angle 6 varies from zero up to a cer- 
tain value 6, for which f vanishes. Hence, when analyzing tbe asymptotic behavior in the 

vicinity of point A it is to be assumed that u is small and angle 6 is finite. Immediately 
outside domain G (within domain G the solution is spherically symmetric) there exists in 

the vicinity of point A an area where u is of the order of a3 for which the solution is of the 
form (1.7): 

~),=Y~,(9t6$V~,(~)6~4..., r~-‘a,(JI)+‘.8,(I/?fB?-t-... 

j=jo(9)$- lt($)6’f.**., *==‘x/V (% -+ 0, 6 -* 6) 

Equations definin 
that for small 6 and 1& 

functions of $ were derived and analyzed in [l], where it was shown 
-, 0 tbe value of the gas-dynamic functions are defined by Formulas 

YgS$l ?h~-tf-‘/ox’Vrl;-fC~*~~-*/(~~-I)]~~, . . . 

( 3c*‘,‘r 
v,Cs::+ --‘f~xf---- 13 l/K 

) 
62, f =: x? - 

( 
x2+ 

3x (x - 1) c*“’ 

13 pT--- ) 6? (2.1) 

Here C is a constant of integration. A transition to finite values of 6 is implied when 
rj + 0. Hence, the asymptotics of the gas-dynamic functions in the area of finite values are 
to be sought in the form 

aa - u,.(S) + aSi* vDl, (6) -+ w112 (6) f - . *, vs = “& (3) 3- cd’.‘? “& (6) f- cwB (6) -{-a. - (2.2) 

f = f. (6) + a”Tf, (6) + al2 (6) -I- . * . 
The same method was used throughout this paper for deriving the systems of differential 

equations for the determination of functions with identical subscripts. It consisted of a sub- 
stitution of asymptotic formulas into (1.5) and equating to zero of coefficients of equal po- 
wers of the small parameter. For 6 = 0 the values of functions are defined by asymptotics 
(2.1). The system and the initial data defining functions with subscript 0 are 

Vb (vaoa, ?F-- V~J = 0, ’ f’s* (Z’Q / y’T;+ Pa,) + jo'/ (x --- 1) JK= 0 

V&f01 / VT+ (x - i) lo [u=* + “&‘l VQ - 6 

u ao = 0, ua, ==X, f _ X2 for 6=0 (X3) 

The solution of system (2.3) represents a rarefaction wave (Pr~dtl-Meyer) 

~~~=~jfXsinfi, va0==xcos6, f =x”cos’6 (2.4) 
The value of 8;. %n corresponds to the free boundary. Equations defining functions with 

subscript 1 are 
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All fnnctions with sabscript 1 vanish when 6= Kn, and the following asymptotics hold 

13 JG- 
V 

at- 
-_~c~ljl+Jw, V&, z ClfJ9W7, r,&r;y- 7, c1p'+3W7 (2.6) 

Herep= K77 -6. and C, is a constant of integration. 
Equations defining functions with subscript 2 are 

2x 1/7;co; 6”&* - 2X COS dv,, + 2x fisin ii4=, + (h - 1) f, = 0 

v - (X+5Ltg*v*2 + 
(x - l)l/h 

(f~---i)(h-i-2) tss ,q’-i+ -- 
=* 2% v/i; cosd ’ 

9 
X Vsin 6 C0s (T + Irx6) - x COSS sin (y + l/Kfj ) 

(22-t 1) sin T 
(2.7) 

V 
=I 

=--1/(x+1), V& = 0, fq = 0 for 6 = Cl 

Asymptotics of these functions for 6-. %n are of the form 

cq=i + 
x I/h-cos (y -;- ‘/qn Joi- 

(x + 1) sin r 

Thus, for fl* 0 and small u the gas-dynamical parameters are expressed by Formulas 

vq ==: % v/i;cos p 
13 Jf7; 

-m c1p’+3h&*~~ + h& pz -j_ . . . 

Vii z x sin p + C@‘!7ci’;7 - vK(F_ 2) f32 f . . . 

f= xr sin’ p + 
x (x - i)(lOh - 7) -- 

3h+7 
clp’+Wot% _ 

(2.9) 

Asymptotic formulas (2.9) were derived by series expansion of as-dynamic functiona in 
w powers of a, and are therefore valid for that area of small a and where the ratio OF a term 

to the immediately preceding one tends to zero when CL -B 0. From the ratio of the third Lo 
the second terms of any of Formulas (2.9) we conclude that the latter hold for small values 
of magnitude 5: 

We note that [= - corresponds to the free boundary ,6 = 0 (6 = %n)(*). 
Formulas (2.9) are however valid throughout the neighborhood of point fl= 0, a = 0, i.e. 

for any value of 5. This is readily derived from the following expression of functions in this 

neighborhood 

f=x’JsinE~+P”h-SFI(5)i... (2.11 j 

(Presentation (2.li) is implied by Formulas (2.9) and (2. 71, 
Equations defining functions I’,,(<), Val (r), F, (5) are integrable as elementary func- 

tions. Formalas (2.11) coincide exactly with Formulas (2.9) after a substitution into the for- 

mer of expressions of functions V &), Vg, (6). F&I). 

3. Asymptotic8 of gas-dynamic functions in the free boundary 

l ) It may be assamed that in the free boundary neighborhood %< 2.5 (h > 7/3). In the follow- 
wing we shall consider values comprised in the interval 1.S < % < 2.5. 
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peigbborbood. It follows from the asymptotic formulas derived in Section2 that for 

stnsll a the free honndary coincides in the (q-plane with half-line /!l=i 0 (6 = Kn). In order 

to deterntfne that put of segment AN 0’ is the intersection point of half-line @ = 0 with the 

W-uis) which coincides with the free bonndaty it is necessary to analyze the behavior of 

gae-dynmic functions for p + 0 and finite U, Le. to find the expansion of these functions 
in powers of /3 

V= = x JOi+ pv=, (a) + p1+3hnt(l, (a) + -. . vB = pas, (a) + $3h’7vg, (4 + * * . , 

f = P/o (4 + P1+3hn /l(a) + ..- (3.1) 

Exponents of @ and asymptotics of functions of a for CL + 0 were derived from (2.9). 
The free boundary rectilinear part coincides in the tq-plane with the half-interval of 

valaes of u (0s u 5 Q 
shown in the following J! 

in which functions of u in Formulas (3.1) are finite. It willbe 
at a flexure of the free boundary in the tq-plane occurs when any 

of the functions of a tend to = within the interval (0 < u < a,). The value of parameter a 

at the point N - ak ia defined by Formula (1.8). 

S t a t e m e n t 3.1. When % 2 2 and angle y 2 yk (%) (angle rk (x) is defined by Eq. 

(1.9)). or %_C 2 and angle y 5 yk (Xl, then functions of u expressed by (3.1) are finite 

throughout the interval (0 < u < ak ). Otherwise there exists such a value of CL,, (0 < a, < 
< CL,) for.which all functions of a in (3.1) become ~0. 

Proof of statement 3.1 will be given in detail for functions with subscript 0, after which 

a proof of this Statement for functions with subscript 1 may be obtained directly. 

Equations of fanctiona with subscript 0 are 

2 )/Ka (x r/K- a) va: - 4vg F~, - 2 JfFv< + (h - 1) l/Fafo’ = 0 

vii-a (x JfK- a) v$ - vt + xhvb - (h - 1) fe = 0 

a (x V/i;-- a) l0’ + (x - 1) f. [- I/i;,, + x ‘r/K+- a (x VA--- a,) (a - ak)] = 0 

(3.2) 

The system consisting of the second and third of these Eqs. may be solved independent- 
ly of the first, after which the solution of the first Eq. is obtained by means of simply quad- 
rature. A qualitative picture of this solution may thus be obtained by analyzing the last two 

Eqs. of (3.2). 
It will be readily seen from these equations that magnitudes wg and fo are simultaneous- 

ly either finite, or infinite for any v2lues of Q < ak. 
I x 4- 

Singular poin& of this system are CL = 

h and a = a*. Point a = x\lh belongs to the integration interval (0, u ) then and 
then, when angle y is greater than angle yk (io. System (3.2) has a solution fu a) a 0 which t 

does not however satisfy the asymptotics when a + 0, hence by virtue of uniqueness when 

a < ~fi (y > y (Xl), or a < uk (y < yk (X)1, we always have fo (a) > 0. 

For y > yk (X and u < %\li; functions ~3, f and /o are bounded, and vanish at point u = 

= % di. In fact, coefficient C, > 0 when y> yk, hence ~3~ and f,, decrease with small U. 

In qrder to obtain an increase in the function fo it is necessary for the function ~1, to be- 

come greater than k. But at the point at which v3,, = x the value off, is smaller that X’ 

andv so’< 0, i.e. vgo is still smaller than X. It follows from the boundedness of the fano- 

tions v~u and fu that they vanish at the point u - x\lh, and 

Q.4 - - 4 (35 VT- a),. f. =: A2 (a - x I/ij*(“-‘) (3.3) 

It is readily aeen that constants of integration A, and A, must be positive. Flom the 
first of Eqs. of system (3.2) follows that the function v3o + const when a -O x\lh. 
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P I o o f o f S t a t e m e n t 3.1. When y= y, (~1 coefficientsCz vanishes, CL~== %fl, 

and the looked for solution of system (3.2) is 

V& =,x, 1, = n’ (3.4) 

We also write down this solution of system (3.2) for %=I 2 (y is arbitrary) 

(3.5) 

Generally it is sufficient to investigate the field of integralcarves along curve (L) speci- 
fied by F:qa. 

(x -- I)(% f/h-- IfI;) 

‘L, 
i Y_ _; ___ ~__ __~_____~__ c1, 

v h (x -_ 3)(cl-- In-) 
f - 2’2 (L) (3.6) 

I,el dwgo/d a define the direction of curve (L) at the point U, and 08~’ the direction of 

the field of integral curves at that point, itld 

drbo 2 (x --- 1)(x - 2)(x If/i; 
A-_ &-;i;- =---- 

q.) akz --~ 
(x -- 3)?(a -. ak)%(7c VT-- a) l/K 

(3.7) 

T h e r a s c o f x 2 2 and y b yk (x). Function v~~decreases with increasing CI, van- 

ishes for a = x~?L, and becomes negative when u y x\lh. The vanishing of the function 

vgofor a = xdh would be accompanied by a negative derivative of vst, which is not poe- 

sible. Along curve L the function vgo decreases monotonously, is negative for a = KG, 

a b 

C 

Fig. 3, a, 6, c, d 

d 

and becomes DO when CI = a*. As the difference A is positive for a > q/X, therefore VI,,, 
and conseqamtly also f,, do not become infinitely great for any valaea of a < a, (Fig. 3 
a) (*I. It will be aem from eqnations that for a + a& l the foilowing aowt~~ptiwa are valid 
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vb Y (a - at)*-X,’ j - (a - ak)l-x (343) 

T h s c a a a o f x_< 2 and y<y*(%). The magnitude of xfi is greater than ak, 
hence the function V~ increases monotonously along curve (L), and becomes 00 when Q = 

= CL,. Along the integral curYe the magnitude of v3o is greater than zero, as a us0 equal to 

zero at a certain point would be accompanied by a positive derivative v3o’at that point. As 

the difference A is negative, the looked for integral curve lies under curve (L), hence us0 

and f are finite for any u < ak (Fig. 36). It will be readily seen that for u + uk 

v~-const, fO~@--akt 
1-x 

(3.9) 

The case of%>ZPndy<y*(%).The’magnitudc %fl is greater than CL*, there- 
fore the difference A is positive throughout the interval (0, a,). Curve L becomes m when 
u = C+ As the point kt = 0, ~3~ = x, f- % ) is common to curve L and the unknown inte- 

gal curve, the latter must lie above curve L, and consequently must become ec for a cer- 
tain value of u o (0 < CL, I CL& Magnitude U* cannot coincide with CL&, as for u + uk the 
rate of increase of u3 along the integral curve cannot exceed (2 -h) (%fi - a,) a*h-” 
(a - U, 1-1 while at % e 8ame time the function ti 

(xhH - uk 1 ukh es (a - a J1 when a -+ uk, 

3,, increases along curve L as (2 - hP’ 

and the difference of coefficients for (a - 

- a* 1’” is negative (Fig. 3~). 
T h e c a s e o f %< 2 and y> yk (%I. The function us0 decreases with increasing CL, 

vanishes for a = %< d h h, an t en b ecomcs negative. Along curve (L) the function ~3, is a 

monotonously decreasing functuon of a, is positive for a = ~6~ and becomes 00 when u = 

= u*. As the difference A is negative for u > %fi, hence the unknown integral curve lies 
under curve L, and must become 00 for a certain value of a0 (~0 < a,, -< u&. 

The value of U, is a0 < U, because the one only integral curve 1 passing through the 

point a - ak, wso = - Q) does not satisfy initial data (3.2). In fact, the curve defined by 

the system of equations with initial data (3.2) passes through the point P (U = %fi, us0 ,= 

- 0, ff) = Oh and in the neighborhood of that point satisfies Eqs. (3.3) with positive coef- 

ficients A, and .4 2. Point P is a nodal point, and all integral curves passing through it sat- 
is& in ita vicinity Eqa. (3.3) for various values of coefficients A t and A 2. If curve t passe9 
through the point P, then its corresponding coefficient A t is negative, as oiherwise there 
would exist an integral curve lying between Curves I and L, and by virtue of uniqueness 
having a finite value for u 1~ ak which is not possible (Fig. 3d). 

Thus, when x > 2, y < yk (%I, and % < 2, y > yk (%) the value of CL, for which the func- 

tion ~3~ becomes 00 is smaller than C+ Hence, the value of CL~ can only be determined by 

numerical integration. Xt folIows from system (3.2) that for a * U, 

The proof for functions with subscript 0 is thus completed. 
Functions with subscript 1 are defined by system 

14 r/i;0 (%1/Z- I) 2~~: + 7 VLa (h -1) 1; - 2~~~ [(3n + 7) v=, + 7 ‘)/7;v,,] - 

- 14V& (2v,* + yrhz$J = 0 

14 I/i;;; (x VT--- a) vk - 2v,, [(3h -t 7) vA, - 7xh] - (h - I)(311 + 7) It z= 0 (3.11) 

7 Va(% VZ -~)h’-~h~(3~f7%)ug-(3x+17)fo- 

(Footnote continued from previous page) 

l ) All investigations will be carried out in the au3+ane, and projections of curves onto 
this plane will be considered. In the following text the term ‘curve’ will be used to de- 
note the projection of a curve on the UU~-plane. 
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The coefficients of this system depend on the functions with subscript 0. Conseqnently 
particular values of u in systems (3.2) and (3.11) coincide, and it is readily trten that 

functions with subscripts 0 and 1 are simultaneously either finite, or infinite. Thus for u + 

+ a, (the third and fourth cases) the following is obtained 

V8,=r A @*-a) -(1+3&t 
, fizz B (20 - a)-@f3ik ‘), v,, z C (zO - a)-(***‘fi) (3.12) 

Here A is the constant of integration of system (3.11). 

B 2 JGa (x vi;-- a) c -rz: 4 V;;cl (Sh + 7) -=- 
A h(h-I) * A (x + *)W + 7) 

Thus the validity of Statement 3.1 is also proved for functions with subscript 1. 
Statement 3.2. 1fx22andy2Yk(X)(conversely x<2,y,<yk(X)),thentbe 

free boundary coincides with half-interval AN of half-line ,fl= 0, where N is the intersection 

point of this half-line with the q-axis (Fig. la). 

In fact, it follows from Statement 3.1 that functions of u with subscripts 0 and 1 are 

finite in the half-interval (0, CL,), and consequently f is zero in the half-interval AN. 

Statement 3.3. If X> 2 and y < yk (x) konverseIy X< 2 and y> yk (*)I, then the 

free boundary coincides with the half-interval AK of half-line fl- 0, of which point K is 

lying strictly within interval AN (Fig. lb). The free boundary becomes flexured at point K 

(B-0,a=a,<u,),and 

(3=:go*(u-CM”” (go*<o. k=(3h--7)/3h) (3.i3) 

is its equation in the neighborhood of point K when u - uu > 0 (fl+ 0, u - do + O), and ho 
is the value of u within the interval (0, a*) for which functions of u in (3;lf become m. 

Functions of a expressed in form (3.1) are finite in the interval (0, a& hence the half- 

interval AK belongs to the free boundary. Point K is a singular point, and the determination 
of the free boundary immediately beyond that point requires a complete analysis of the gas 
dynamics throughout ite neighborhood. Formulas (3.10) and (3.12) derived in the proof of 
Statement 3.1 will serve as the starting point. Substituting these into (3.1) we obtain 

(a--)t?ll~f[-_fh-i)n-‘i~rr,(x If~-ao)+Ag~h~f]+-~~ 

(x--ao)~~f~[@t-t(x ‘t/,T-uo)~+Bg*h’f+.~~ (3.i-5) 

(a - 6)’ (r=., - x ~Zj~~$-aaz(X -1)-t@ )/i;-a3)+Cg3h17)+... 

(k=(M-7)/3h, g=pk/(aO-a)] for do--z--,0, p-0 

Formulas (3.1) are series expansions in powers of 6. Formulas (3.10) and.(3.12) were 

derived for a < x0. Hence Formulas (3.14) hold onfy for small negative values of fraction 

g=JW(ctu - CL). Throughout the neighborhood of point I< parameter g rune over the full 

length of the real axis, hence functions defining the gas dynamics in this neighborhood are 

expressed by 

(= - %) 53 = gP& (g)l (a - aO)1 (ua - % m = P’P, (g) 

(=- aOfff=BV(g) (3%) 

The system which dcfinss p,(g), V, (e) and F (g> is 

dP 
dY,- 

{X[(x-3)k-~+$_)JV~+3jl((F-Y~*)-2~f}F 

[@ - l)@ - I) % + kVel p - v, 1% + kY,t I% + y, 1 
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dV8 - [2x +(x -t- 1) "al F 
dgg= [x+kV~)dF/dV,+(ic-i)kF (3.16) 

dVa 
dgg=- 

IVFldV,) NV, I49 6 +W 0% + 2 (x - 1)(x + Va) V, 
ix + kV*Nx - 1) 

(x = fiLao (x i/h-- ao)) 

The initial aaymptotics for g + 0 are 

‘8 z-2 )/hao(x+i)-q” JG-a,) +@h!‘+... (3.17) 

F =(x fl-aO)h,,fh-l + Bg3”” +, . . . , V, ZZ-(~-~)-~(X fi-a,,)?Q $- Cg3h/7 +. . - 

For d < a0 the line g = 0 corresponds to the free boundary along which the following 

two conditions must be fulfilled:- 

1) pressure at the free boundary must be zero, i.e. f= 0, 

2) the free boundary is a line of flow expressed by equation 

da 
dp- (3.18) 

or in terms of variables g, fi by 

dg L dp==p [ 
Ii-1 I/ha0 x VT--- a0 fi p2(1-h) g?V, (g) 

v,(g) 1 (3.19) 

Hence for CL > CL, the free boundary in the neighborhood of point 3 = 0, CL = a, is repre- 

sented either by line g = 0 when FgZlk 
g2’kF, or by line g = g, (go 

-t 0 for g -4 0 (g > O), because off= (U - CI )2(1-k)/k 

’ 0) along which functions F and Vg assume fixed values 

F ~0, v,= -- I/rTa(,(ic pi--c&J/k (3.89 

Integration of system (3.17) h as to be obviously carried out up to that value of g which 
for a > c+, corresponds to the free boundary. 

Fig. 40. Fig. 46 

The first Eq. of system (3.16) may be integrated independently of the second and third 

Eqs., after which the inteqatiou of the latter is reduced to quadratures. Isoclines 2 and 3 

of the zero and infinity of this equation respectively, and the looked for integral curve 1 are 

shows on Fig. 4a and 46 for the case of X> 2, y < Ye (X), and X< 2, y b yr (Y.) respective- 

ly* 
The equation has six singular points. viz. 
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the initial point of integration which is a saddle point 

VW- ---2/x+4 )li;ro(% JGL-a@)* Fe = h-1 (x fi - a+# a$ 

subcritical nodal points 

V,, 
GO, F&=0; v&=-&o, Fs=oo 

nodal points 

V4 = - (h - 1) 1/&s, (x I/i; - q) [(h - 2) kf-1, FI = ‘I4 (SC - i)’ Vt 

V& =- )‘iia,(v.‘)/L--0). F4= 0 

a saddle end point 

va, = - J&Jr-r (x J& -a), FS = 0 

Here line g = gJ, 3r Y the corresponding point, and FJ a characteristic. In fact, the eq- 

uation of one of tb~e family of characteristics fa bunch of characteristics emanating from 
point A forms another family) is 

da (V, -aT-f 
-- 
d6 - -f&l 

% (pm --a)+I/~l(U,-a)3+vd-fl 
(3.21) 

If the line g = const belongs to this family, then values of functions corresponding to 
this line must satisfy Eq. 

- k [V,f ?P] = IGo& 6 - a01 

(3.22) 
(-j-VT for x>2, - JfT for z<2) 

A direct check will show that VgJ and frJ satisfy (3.22). 

N o t e. Statements that a line is a characteristic, or a free boundary are to be under- 
stood as meaning that equations and conditions relevant to the neighborhood of point a = 
=a~,R=Okz-a, and fl are infinitely small magnitudes) are satisfied with respect to 

their predominant terms, 
A particular solution of system (3.16) satisfying the asymptotics for g + 0 may be writ- 

ten as follows 

F = [(x - i) +] ** 
2a Jr (x _I- i) V, 1-k 

44 &+I) I 

Values of A obtained by numerical calculations f.4 > 0 for 3 > 2, and A < 0 for X< 2) 
show that the absolute value of Vg decreases for small negative g. Hence the integral curve 
path is built up as follows (rig. 40 and b): from point b,, Fo corresponding to g = 0 fa < 

< a,) the curve runs towards the coordinate origin V3t = 0, Ft = 0 which corresponds to 

g = DO, after which it reaches point Vsn = f=, Fz = 00 (the plus sign is for x > 2, and the 
minus for x < 2) corresponding to g = 

F=g ‘lk, hence 
0 (u. > ~0). It will be readily seen that in thie case 

therefore the line g = 0 does not correspond to the free boundary. Consequently, tbt point 
corresponding to the latter is 

Vs, = ?ra (~~5 - a) I k, F, = 0 

From the infinitely remote point Vg,, F2 the curve reachaa nodal point Vss, F, along a 

separate branch. fta direction at this point is given by 
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(33.24) 

Since point Vg,, F, corresponding to the free boundary does not belong to the integral 

curve (3.231, the solution has a weak discontinuity at point b’s 3, F3, which is admissible 

as point Vg,, F3 corresponds to the characteristic. 

Point Vg,, F, is a saddle point. One of the saddle separstrices coincides with line F = 

=U . 

The second separatrix emanates from point VgS S F, with slope 

dF x(1 - k) (K yrh - a01 -- 
dV,- )/itaak [(h-i) k -h] 

and reaches point Vg,, F3 tangentially to the direction of the common whisker 

(3.25) 

dF - 3%hsfs (x vx - ao) (13hf - 34h f 28) 
-= 
fl, ~ ‘(h-~)f3h-‘I)(tt-~If(lOh-14) 

(3.26) 

The separatrix u corresponds to the integral curve final segment. Values of Va along 
this segment may be derived by integrating the following Eq. (particular to the second and 

third of Eqs. of system (3.16)) 

+ [2F + 2 (X -- 1) (a _1- I’,)1 [(a $ kV,) $; f- (z - 1) RF]} 

As this equation is linear, and at point Vg,, V, (Vgs 1 its derivative is 

dv, I 
~=$&+_(x+i)F&f-~~ ( -~*=t-(X+‘)L’61 dFb 

dF $- 

(3.27) 

hence Va is obviously everywhere finite. 

Along the Looked for integral curve the corresponding angle (3 becomes negative beyond 

point Vg2 = ~0, F, = DO, g = 0 (a b a,), therefore we substitute in this area new variables 

for g 

g’ Zf B (a - &of-f/k (3.29) 

Ry integrating the second of Eqs. of system (3.16) along the fiual segment from Vg,, F, 

to Vs,, F,, we obtain the value of go* which corresponds to the free boundary. This value 

will obviously be negative and different from either zero, or’negative infinity, i.e. the free 

boundary in the ~$r~-plane is curvilinear for a > an, and at the point Q = u,, p = 0 tangent 

to Line ,@ = 0 (Fig. L 61. 
Thus, the equation of the free boundary in the neighborhood of the point K may be ex- 

pressed by Eqs. fi = 0 for Q _< Q,,, and /? = go* (a - c+,)~/~ when CL 2 CL,. 

This work was discussed by the author with S.K. Goduuov, and the numerous formulas 
were checked by I.L,. Kireeva who had also carried out the integration of systems of ordin- 

ary differential equations on a computer. V.S. Zhiltseva and M-A. Mindtseva have been of 

considerable assistance in the formulation of this paper. The author wishes to express his 

gratitude to ail concerned. 
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