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A space containing an explosive substance is provided with a conical cutout having its ver-
tex at point 0. As the result of ignition at point O a detonation wave and the motion of pro-
ducts of explosion behind it are generated. Presence of the hollow cone originates a rare-
faction wave bounded by a free surface. The behavior of gas-dynamic functions in this rare-
faction wave is analyzed in this paper in terms of the cone vertex angle and of the adiaba~
tic exponent of products of explosion.

The products of the explosion initiated by ignition at point O of the space containing an
explosive substance, and provided with a cutout in the form of a hollow cone § with its ver-
tex at point O are bounded by the detonation wave front and the free surface. The detonation
wave front propagates with constant velocity D. At an instant ¢ the detonation wave front is
represented by that part of sphere Q of radius D¢ having its center at O, which is bounded
by its intersection with cone S along circle ¥ . In the following the form of the free surface
which depends on the adiabatic exponent % of the products of explosion and on the cone §
vertex angle y will be determined.

Critical values of angle y, (%) will be determined for each value of the adiabatic expo-
nent X. If exponent % > 2 and angle y 2y, (%) (conversely #< 2 and y <y, (%)) then at the
instant ¢ the free surface is defined by a cone the base of which coincides with circle M,
and its vertex lies on the axis of the cone S. In all other cases the free surface consists of
a truncated cone adjoining the detonation wave front, and of a surface of revolution genera-
ted by a line of nonzert curvature. The latter indicates the onset of a stream with a base
expanding with time.

1. Statement of problem. The motion of gas behind a detonation wave propaga-
ting from the ignition initiation point O (the coordinate origin) in a space provided with a
conical cutout (the cone axis is defined by x =0,y = 0, 2 < 0, and y is the angle between
the cone axis and its generatrix) and filled with an explosive substance, is cylindrically
symmetric and self-similar, In view of this cylindrical symmetry it is sufficient to consider
the flow in the rz-plane (r = \/x? + y ). The number of independent variables in the equations
of gas dynamics which define the flow by virtue of self-similarity) may be reduced to two,
viz. £=7/t, 1= 3/t. The unknown fonctions are: the density p and two velocity components
V,and ¥V along the axes r and 2. The pressure p of the products of explosion is defined by
the equation of state

p==xp* (1.1)
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where % is the adiabatic exponent. At the instant immediately preceding ignition
t=0, p=0, vy=v,=0, p=un/{x+ 1) (1.2}
The detonation wave satisfies the Jouguet condition, and at instant ¢ is represented by
the part of a sphere of radins DT (D = % + 1) bounded by the corresponding cone section.
The arc of circle A4 7 of radius D with its center at O and symmetric relative to the n-axis
corresponds in the £xeplane to the detonation wave front, The angle between radius OA4 (or
OA’) end the semi-axis 17 (< 0) is obviously equal to y. For the purpose of this analysis
it is convenient to introduce polar coordinates o and & with the origin at point A

t = Dsinytacos(y + Vi),
n=—Dcosy+asin(y+ VR&) (h=(+1)/@x=—1) (1.3)
and velocity components v, and vg
v, =Dsiny +r cos(y + VA8 —vgsin(r+ V& 6)
vp=—Decost+ v sin(y + VA8 + vy cos(v + VES)

where ﬁﬁ is the angle between the half-line emanating from point 4 and the direction of
the detonation wave front at that point, @ is the distance from point A along the half-line,
and v, end.v g are the velocity components along the half-line emanating from point 4 and a
line parpendicnlar to the latter respectively.
The Egs. of gas dynamics in terms of these variables are of the form
dv, vy 4 oy, t 9
(v, — @) 53 -+ 'y (ﬁ:“gﬁ— - "5) -+ 137 =0

vy vy { Oy q af
(va—a) 35 + 5 (—}7,-'- 25 T va) + 1) Via =0
(1.5}
af vy af v, v, { dvy
("a“‘“}‘a-'*"m‘a):'i‘(“”i)f{ 27 Tt Via 52 -+
+ v, 05 (Y 4 VE8)— vgsin(y < VAS) | Dsiny ]
acos(y+ Vh8) 4 {Dsiny

Here [ is the square of the velocity of sound.

A domain G in the £7-plane in which the flow behind the wave coincided with the spher-
ically symmetric solution derived by Zel’dovich [2] was detemined in paper [1}. This do-
main is bounded by the detonation wave front A4 and two symmetric segments of character
istics AB and A’B”. For sufficiently large angles ¥ (y > y,,) points B and 8" coincide, and
lie on the 7-axis. Otherwise (y <Y, ), the shock wave frout BB * which connects points B and
B’ (Fig. 1, a and b) also penetrated domain G. The magnitude of angle y, depends on x
only, and is determined by numerical integration.

In the following asymptotic behavior of gas-
dynamic functions is analyzed outside domain G,
namely, in the vicinity of point A4 and of the free
boundary emanating from that point (because of
symmetry there is no need to repeat this analy-
sis for point 4”). The presence of a hollow cone
creates at point 4 a centered rarefaction wave
bounded by the free bonndary, i.e. by a line along
which p = 0. This wave corresponds as regards
its predominant term to the Prandtl-Meyer solu-
Fig. 1 tion
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ve=x V& sin§, vg=wcos§, [=u=costo 1.6)

while the half-line emanating from point 4 at the angle % \/I;ﬂ’ corresponds in the £7n-plane
to the detonation wave front(*). Characteristic 4B which bounds domain G does not how-
ever belong to the centered rarefaction wave, because the values of parameters along char
acteristic AB coincide with those of {1,6) at the point A only. This shows that in the imme-
diate vicinity of characteristic 48 the solution structure is somewhat different when o is
of the order of 83 (the equation of characteristic AB is a = %/y xh'-* §%). Namely, there
exists in the vicinity of the point 4, between the characteristic AB and the rarefaction
wave, a transition zone where the solation is of the form

O = 0, (B8 + v, (DB + ..y vy = vy (0) F vy, (F F
I= fo (\P) + I] (‘P)b’ + e P = G/G’ (a, - 0, 8 — 0) (1.7)

Expression (1.7) corresponds to a split of singularity in the neighborhood of point a = 0,
5= 0 in the a 5-plane with the upper boundary = ¢, = ®/;, »h1-5 being the characteristic
AB, and the lower boundary { = 0 indicating 2 transition to finite values of 8 (Fig. 2). Asymp-
" totics (1.7) were derived and analyzed in [1]. Values computed

from Formulas (1.7) coincide for ) = s, with those of the

spherically symmetric solution along characteristic 4B, while
for i close to ¥y (f — f4 < 0) a compression wave is genera-

ted which for y <y, becomes a shock wave. For¢y + 0 (1.7)

matches with the Prandtl-Meyer solution {1.6).

- With the use of asymptotica (1.7) the solution for the vic~

A ===——=-> 4 inity of point 4 will be analyzed in Section 2 alao for finite
values of 8 (0 <5 < %7) when ¢/ + 0. Thus the complete neigh~
borhood of point 4 (a is small) consists of three areas as

Fig. 2
follows ;-

first, in which the solution coincides with the spherically symmetric solution, it is boun«
ded by the detonation wave front

a=2(x+1) Vs
and characteristic 4B,
second, in which a. is of the order of §3
4/ %R1B > = /65> 0
this is the transition from a rarefaction to a compression wave,

third, the area of the rarefaction wave terminating at the free boundary which corres-
ponds to finite values of § (0 <5 < %),

The gas dynamics in the neighborhood of point 4 analyzed in Section 2 define the end
part of the free boundary AK. From the Prandtl-Meyer solution (1.6) follows that for small
values of o the free boundary coincides in the £7-plane with half-line 5= %m. Let N be
the intersection point of this half-line with the y-axis with coordinates &= X7, a = a,
where

{»-+1)siny
cos(1-+ 1y Vhn)
Line 4K obviously coincides in the £7-plane with the free boundary rectilinear part.
Point K, depending on angle y and exponent x, either coincides with N, or lies within seg-

ment AN,
It will be shown in Section 3 that when %2 2 and y 2y, (%) (conversely %<2 and y<

<% (%)), then point K coincides with point N. Otherwise point K lies strictly within seg-
ment AN (Fig. 1, ¢ and b), Angle y, (%) i s defined by Eq.

akz.—.

{1.8)

*) It is assumed that A <9 (l.e. % > 1.25) with which ¥\/An < 1.57, and the rarcfaction
wave does not overtake the detonation wave front.
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ap=x Vi (1.9)

N ot e.iIf the characteristics passing through any arbitrarily small neighborhood of
point P do not intersect a sufficiently small neighborhood of point 4, then point P does not
belong to AKX, Point N is reached by the flow line which is the 7-axis. Hence, point N can«
not belong to AK, and the coincidence of AN and AK is to be interpreted as a coincidence
of the half-intervals AN and AK. Position of the free boundary and the gas dynamics in its
vicinity, but outside 4K can only be determined by a numerical computation of partial dif-
ferential equations.

2. Asymptotics of gas-dynamic functions in the neighborhood of
point A. At this point @ = 0, and the magnitude of angle & varies from zero up to a cer-
tain value 8 for which f vanishes. Hence, when analyzing the asymptotic behavior in the
vicinity of pomt 4 it is to be assumed that & is small and angle 8 is finite. Immediately
outside domain G {within domain G the solution is spherically symmetric) there exists in
the vicinity of point A an area where a is of the order of 83 for which the solution is of the
form (1.7):

va=v%(\p)6 + val(‘p)63+' tre Uy =Ty, W)+ s, (P 8%+
T=/le(P)+ Hh () Y==a/8 (20, 6-0)

Equations defining functions of l/l were denved and analyzed in [1] where it was shown
that for small § and {J + 0 the value of the gas-dynamic functions are defined by Formulas

va s VES - [—Yex Vi 9T — /(x4 1)] 87,
* 3w (x — 1) CY'"
v,zx+( 1/.,c+13;p/h )5“ /zx‘-‘-—(u3+ ._1‘.(’_13__}_)71\# )5" (2.1)

Here C is a constant of integration. A transition to finite values of § is implied when
s + 0. Hence, the asymptotics of the gas-dynamic functions in the area of finite values are
to be sought in the form

Vo= o (B)F vy (8) + 20, () £ ey vy =1y, (8) &V 0y, (8) f- g, (8) 4+ - (2:2)
f=1o(®)+alfy(6)+afe®) 4

The same method was used throughout this paper for deriving the systems of differential
equations for the detemination of functions with identical subscripts. It consisted of a sub~
stitution of asymptotic formulas into (1.5) and equating to zero of coefficients of equal po-
wers of the small parameter. For § = 0 the values of functions are defined by asymptotics
{2.1). The system and the initial data defining functions with subscript 0 are

vy, (va, / Vi— vg,) =0 vg, (2o, |/ VE+ va) o (%= 1) Vi=0
v o/ VE+ (x—1) folog, + 251 VA =0
Ve, =0, vy =n,  f=%' for §=0 {0
The solution of system (2.3) represents a rarefaction wave {Prandtl-Meyer)
v, =% Vhsing, Vg, = % €088, f=x2cos?§ (2.4)

The valne of § = %7 corresponds to the free boundary. Equations defining functions with
subscript 1 are

T cos (v, — Vhvy) + 6rhsinbe, + 3 (h—1) Vﬁ?x =0

T cos8 (vy, -+ VA, ) 4% (13h— T)sinbrg, + 355" =0

% (% — 1) cos*§ (Try, -- 13 Vi, ) + Tcos 8y’ — 14z sin cos 8 vy, + (6h+ 12) sind’y = 0
Ve, = C8", vy =361 VR, fim—-3x(x—1)C" /13 VR for 60

(2.5
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All functions with subscript 1 vanish when § = %7, and the following asymptotics hold

13 V'T ~x(u—-1)(10/l—7

Ve = — m Claldh:l't/‘l’ vy, = CIBM',-" h= hT ) ClBl-h'lh/'l (2.6)

Here 3= Y%n — &, and C, is a constant of integration.
Equations defining functions with subscript 2 are

24 Vheosbo, ' — 2% cosdvy, + 2x Vhsin Svg,+(h—1) fs=0

% (x—1)cosdug’ + o' + % (% + 3) sindvy -+ % (x — 1) Vl_z'coséra,=0
5 (hi—1)h+2) teb
& " m— Vi &% Vi css 2t
% Vhsin§cos(y+ VE6)—xcos§sin(y + V40)
+ (% +1)siny
Vo= —1/(x+1), vy, =0, fo=0 for §=0

Asymptotics of these functions for § » %# are of the form

Cg ” Cg ZKC’
v, R B vy, =— Vit_2 B, fe=-— Vit—2 B (28

(2.7)

(L Vhcos(y 4 Yar VR)
Cr=1+ (¢ -F1)sin ¥
Thus, for 8 0 and small a the gas-dynamical parameters are expressed by Formulas

13 Vh . C.

Tan OB ey

. ITILY C

vy zusmB—{—C;Bs'”a"———i— Bx ... (2.9)

Vi —2)
C Bl+3h/7a'/7 _

VA VﬁcosB —

% (% —1)(10h —7) 2%
Sh+1 Vh(h—2)
Asymptotic formulas (2.9) were derived by series expansion of gas-dynamic functions in
powers of a, and are therefore valid for that area of small a and 8 where the ratio of a term
to the immediately preceding one tends to zero when & -+ 0. From the ratio of the third to
the second terms of any of Formulas (2.9) we conclude that the latter hold for small values
of magnitude :

f=x*sin*f Caf%a

¢ = ap™h (2.10)
We note that { = oo corresponds to the free boundary 8= 0 (5 = %m ) (*).
Formulas (2.9) are however valid throughout the neighborhood of point 8= 10, a = 0, i.e.
for any value of {. This is readily derived from the following expression of functions in this
neighborhood

v, =% Viheosp+ 33"—5V4ll @)t -ey vy neinB ,iah“GVgt @+

fextsin?3 4 B SR () + - (2.11)
(Presentation (2.1i) is implied by Formulas (2.9) and (2. M.
Equations defining functions V, ({), V5, ({), F; ({) are integrable as elementary func-
tions. Formulas (2.11) coincide exactly with Formulas (2.9) after a substitution into the for-
mer of expressions of functions Va, ), Vs, ), F (.

3. Asymptotics of gas-dynamic functions in the free boundary

*) It may be assumed that in the free boundary neighborhood %< 2.5 (4> 7/3). In the follow-
wing we shall consider values comprised in the interval 1.5 < % < 2.5,
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neighborhood. It follows from the asymptotic formulas derived in Section 2 that for
small @ the free boundary coincides in the £7-plane with half-line 8= 0 (5 = % 7). In order
to determine that part of segment AN (V is the intersection point of half-line 3= 0 with the
1-axis) which colncides with the free boundary it is necessary to analyze the behavior of
gas-dynamic functions for 8- 0 and finite ., i.e. to find the expansion of these functions
in powers of 3

=% VE+ B, (@) + B, (@) + - vy=Poy, (@) + B Trg (@) + -,
}=B% @) + B M)+ - 3.1

Exponents of 3 and asymptotics of functions of @ for & + 0 were derived from (2.9).

The free boundary rectilinear part coincides in the £7-plane with the half-interval of
values of a (0< a € a ) in which functions of @ in Formulas (3.1) are finite. It will. be
shown in the following that a flexure of the free boundary in the £n-plane occurs when any
of the functions of & tend to oo within the interval (0 < a < a,). The value of parameter @
at the point N — a, is defined by Formula (1.8).

Statement 3.1. When X 2 2 and angle y 2y, (%) (angle y, (%) is defined by Eg.
(1.9)), or %< 2 and angle y <y, (%), then functions of a expressed by (3.1) are finite
throughout the interval (0 < a < a, ). Otherwise there exists such a value of a;, (0<a, <
<a,) for. which all functions of a in (3.1) become oo,

Proof of statement 3.1 will be given in detail for functions with subscript 0, after which
a proof of this Statement for functions with subscript 1 may be obtained directly.

Equations of functions with subscript 0 are

2VFa(x Vf—a)va:——/wb.ga.-—-Z V/Tv5:+(h— 1) Vhafy =0
VEa(x Vh—a) vy —vg + whog — (h—1) fo =0 (3.2

a(x Vh—a)fo 40t —1) fol— Vhvg +x Vhtax Vhi—ay)(a—a)]=0

'KV’T Cg(! Cga
"¢.~"‘_‘2"—+-7{’—°§+"'1 vy, X m.*_
2)(0:
—~ o ——— ... —
fo=x * 2)}/,_L.a+ , @mpm a—0

The system cousisting of the second and third of these Eqs. may be solved independent-
ly of the first, after which the solution of the first Eq. is obtained by means of simply quad-
rature. A qualitative picture of this solution may thus be obtained by analyzing the last two
Egs. of (3.2).

It will be readily seen from these equations that magnitudes vy and f, are simultaneous-
ly either finite, or infinite for any values of a < a,. Singular points of this system are a =
= %\/h and & = a,. Point @ = %/h belongs to the integration interval (0, @, ) then and
then, when angle ¥ is greater than angle ¥, (%), System (3.2) has a solution fo’ta)a- 0 which
does not however satisfy the asymptotics when a -+ 0, hence by virtue of uniqueness when
a <y {y>y, (%), or a< a, (y <y, (%), we always have f, (a) > 0.

Fory>vy, (xs‘ and a < A functions Y3, and f, are bounded, and vanish at point @ =
= ‘A\/IT. In fact, coefficient £, > 0 when y >y, , hence vg, and f, decrease with small a.
In order to obtain an increase in the function f, it is necessary for the function vg_to be-
come greater than . But at the point at which vg = % the value of f; is smaller that %3
end ve <0, i.e. vy is still smaller than x. It follows from the boundedness of the func-

tions Vs, and f, that they vanish at the point & = %VA, and
v=MxVEh—q),  fom As(a—x VaptD (3.3)

It is readily seen that constants of integration 4, and A, must be positive. From the
first of Egs. of system (3.2) follows that the function vg, + const when @ + % v/ A.
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Proof of Statement 3.1, Wheny=y, (%) coefficientsC, vanishes, a , = x\/h,
and the looked for solution of system (3.2) is
vy, =%, fo=x* (3.4
We also write down this solution of system (3.2) for %= 2 (y is arbitrary)

b o ala—x V&) fo 3
&7 VYhe@a—a) ' 0T T8

3.5

Generally it is sufficient to investigate the field of integral carves along curve (L) speci=
fied by Egs.
by 0 Vi)
BT YR (e~ 3)@— )
et dvg,/d o define the direction of curve (L) at the point a, and vy, ” the direction of
the field of integral curves at that point, aud
oodrg 206 1) — 2)(x VE ) aa

A = Py e T e p—

2T da k3~ e VE—a) VA

The case of x22andy>y, (x). Function v, decreases with increasing a, van-
ishes for @ = xy/A, and becomes negative when a > %\/h. The vanishing of the function
for o = %\/h would be accompanied by a negative derivative of vy, which is not pos-

a, [=rd (L) (3.6)

3.7)

vso
sible. Along curve L the function vy, decreases monotonously, is negative for a = w\/h,
o '0‘;"
[ I
|
L
AN |
| I
b % l
| |
\ \ 1 x e
1 o,
e b
u !
Uz, : w
I
i
|
L
|
|
|
X I
L 4.4
-7
¢ d

Fig. 3,a, b, ¢, d

and becomes co when a = a,. As the difference A is positive fora > u\/i's, there fore Vg

and consequently also fy do not become infinitely great for any values of a < a, (Fig. 3
a) (*). It will be seen from equations that fora -~ a,, the following assumptions are valid

(Footnote carried over to next page)
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vy, ~ (@ — a ', [~{@—a)t™ (3.8
The case of %< 2andy<y,(x). The magnitude of x\ﬂ; is greater than a,,
hence the function vy increases monotonously along curve (L), and becomes oo when o =
= ay. Along the integral curve the magnitude of v5, is greater than zero, as a vg, equal to
zero at a certain point would be accompanied by a positive derivative v, “ at that point. As
the difference A is negative, the looked for integral curve lies under curve (L), hence Y5
and f are finite for any & < a, (Fig. 35). It will be readily seen that fora » a

vy, ~ const, fo~fa— 7% L (3.9)

The case of %> 2andy<y,{%). The magnitude %% is greater than Oy, there-
fore the difference A is positive throughout the interval (0, a ). Curve L becomes o when
@ = a,. As the point (@ = 0, vg) = %, f= x)is common to curve L and the unknown inte-
gral curve, the latter must lie above curve L, and consequently must become oo for a cer-
tain value of a ; (0< a, < ak). Magnitude @, cannot coincide with a,, as for a » a, the
rate of increase of vy, along the integral curve cannot exceed (2 — A) (kWA —a,) a, h~%
{a -~ a,)-! while at t%e same time the function vy, increases along curve L as {2 — A)?
(xh% — a.)ah (- ak)“ when @ » a,, and the difference of coefficients for (a —

- a, )" is negative (Fig. 3¢).

The case of %< 2andy>y, (). The function vy, decreases with increasing a,
vanishes for & = %1/A, and then becomes negative. Along curve (L) the function vs, is a
monotonously decreasing functuon of a, is positive for a = X\/h_, and becomes oo wher a =
= Q. As the difference A is negative for @ > %\/A, hence the unknown integral curve lies
under curve L, and must become = for a certain value of oy {(xy/h<agy<ay.

The value of 6, is 0y < @, because the one only integral curve { passing through the
point @ = @, v5, = — oo does not satisfy initial data (3.2). In fact, the curve defined by
the system of equations with initial data (3.2) passes through the point P (@ = %\/h, vg, =
= 0, f, = 0), and in the neighborhood of that point satisfies Eqs. (3.3) with positive coef-
ficients 4, and 4,. Point P is a nodal point, and all integral curves passing through it sat-
isfy in its vicinity Eqs. (3.3) for various values of coefficients 4 and 4,. If curve { passe=
through the point P, then its corresponding coefficient 4, is negative, as otherwise there
would exist an integral curve lying between turves ! and L, and by virtue of uniqueness
having a finite value for @ = a; which is not possible (Fig. 3d).

Thus, when %> 2,y <y, (x), and %< 2,¥> ¥, (x) the value of o, for which the func-
tion vg, becomes oo is smaller than a,. Hence, the value of @, can only be determined by
numerical integration. It follows from system (3.2) that for a » a,

5 2Vha (v, — %) =1, hae? (v4, — %)
e TR e L (T CR=rn LA

The proof for functions with subscript 0 is thus completed.
Functions with subscript 1 are defined by system

U Vha(xVi—a)v, + T Via(h—1) [y — 20 [Bh+T) vy + T Vivg] —
— 4oy, (Zva‘ -+ V};v&) =0

14 Vha (x Vi—a) vy, — 20, [3h+T) vy, — Toh] — (h—1)(3h + T) 1=0 (3.11)

TVha(x Vie—a) fi — L (B8R + %) 9y, — (3x +17) fo—

(Footnote continued from previous page)

*) All investigations will be carried out in the avg-plane, and projections of curves onto
this plane will be considered. In the following text the term ‘curve’ will be used to de-
note the projection of a curve on the avg-plane.
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—Tx—D) VR VEtax ViE—a)/(@—a)]} =0

B3Yr . v 2 (10 —7) o
Vo, X —Tpam O v, =00, he=gTherry O

The coefficients of this system depend on the functions with subscript 0. Consequently
particular values of a in systems (3.2) and (3.11) coincide, and it is readily seen that
functions with subscripts 0 and 1 are simultaneously either finite, or infinite. Thus for ¢ »
+ a, (the third and fourth cases) the following is obtained

vy = A (2 — a)—(usf:/‘:), fi= B (25 — a)-(ha!x,'?), Vg, = C (2 — a)~(2+3hﬁ) (3.12)

Here A is the constant of integration of system (3.11).

B 2¥RaxYi—aq) € _4Vra(sh+7)
AT Ah—1) d A [EDRERE D)

Thus the validity of Statement 3.1 is also proved for functions with subsecript 1.
Statement 3.2, x> 2endy2> )/k(‘ﬂ-) {conversely %< 2, ¥ <y, (%)), then the
free boundary coincides with half-interval AN of half-line 3 = 0, where N is the intersection

point of this half-line with the np-axis (Fig. la).
In fact, it follows from Statement 3.1 that functions of & with subscripts 0 and 1 are
finite in the half-interval (0, a, ), and consequently f is zero in the half-interval AN,
Statement 3.3, U x> 2and y<y, (%) (conversely x< 2 and y > y, (%)), then the
free boundary coincides with the half-interval AX of half-line 8= 0, of which point X is
lying strictly within interval AN (Fig. 1b). The free boundary becomes flexured at point K
(B: 0,a = ao < ak). and

B go® (@ —ag) /¥ (g0* <0, k=(3h—7T)/3h) (3.13)

is its equation in the neighborhood of point K whena — 0, >0(3+0,a —ay+0), and @y
is the value of a within the interval (0, a,) for which functions of @ in (3.1) become oe.
Functions of a expressed in form (3.1) are finite in the interval (0, a,), hence the half
interval AK belongs to the free boundary. Point K is a singular point, and the determination
of the free boundary immediately beyond that point requires a complete analysis of the gas
dynamics throughout its neighborhood. Formulas (3.10) and (3.12) derived in the proof of
Statement 3.1 will serve as the starting point. Substituting these into (3.1) we obtain

@—w) vy =Bl (h— DA P 2o (¢ Vi— o)+ Ag™ 7} 4 -+
(o — 0P f =B [ah 7 (x Vi — 0P + Bg™ /7] - - @3.14)
(@ — ) (g~ % VA =B [—a? (x — 1) (x VA—a0) +C¢® /7] - -
Ve==(3h —7)/3h, g=P¥/(@—0)] for do—2—0, B—0

Formulas (3.1) are series expansions in powers of 3. Formulas (3.10) and {3.12) were
derived for a <. Hence Formulas (3.14) hold only for small negative values of fraction
g=p*/ (ay — a). Throughout the neighborhood of point K parameter g runs over the full
length of the real axis, hence functions defining the gas dynamics in this neighborhood are
expressed by

(@ — @) vy = BV, (g), (@ — ) (v, —x VR =BV, (g)
(& —ao)* [ =BF (g) (3.15)
The system which defines V3{g), V, (g) and F(g) is
aF Xl —3Nk —(x+1)]Vy + 2k(F ~ V) — 2y} F
dvVy [ — Ok —1) X + AV F— Vg [x + kV3lx + V3 ]
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dv, — 22X+ (=4 ) V] F 3
g 8= WAV, dF [ dV, + (x — 1) kF (3.16)
Vo  |@F|dVy)(aVy/dg)g +2F) VRag+2(x— D)(x + VgV,
g 8= A+ RV —1D)
(x= Vhao (x Vi—a)
The initial asymptotics for g + 0 are
Ve —2 Vhao (x4 1)1 (* Vi —ag) + A4g™/ 7 ... (3.17)

F(x VA—aoath™ + BT o Ve (e—1) Y VE— o) te® 4 Cg™/ 7 - -
For d < 04 the line g = 0 corresponds to the free boundary along which the following
two conditions must be fulfilled:-
1) pressure at the free boundary must be zero, i.e. f= 0,
2) the free boundary is a line of flow expressed by equation

do . Vg0
r = — Vha T (3.18)

or in terms of variables g, 3 by

dg ¢ [L LY VE —ag 4 8 g2y (g)] a1
- SuRS- 1 - .
a8 B 0 Vy (g) (3.19)
Hence for a > ag the free boundary in the neighborhood of point 8= 0, a = Qg is repre-
sented either by line g = 0 when Fg2/% 4 0 for g + 0 (g > 0), because of f= (o — a )2(1-K)/k
g¥/¥F, or by line g = 8o (8o > M along which functions F and V5 assume fixed values
F =0, Vo= Vhay(x Vh—a)/k (3.20)

Integration of system (3.17) has to be obviously carried out up to that value of g which
for a > @, corresponds to the free boundary.

Fig. 40 Fig. 4b

The first Fq. of system (3.16) may be integrated independently of the second and third
Eqs., after which the integration of the latter is reduced to quadratures. Isoclines 2 and 3
of the zero and infinity of this equation respectively, and the looked for integral curve I are
shows on Fig, 4a and 4b for the case of x> 2, y <y, (%), and %< 2, y >y, (*) respective-

ly.
The equation has six singular points, viz.
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the initial point of integration which is a saddle point
Va=—2/u41Vim@Vh—a),  Fo=h1(x Vh—a)a?
subcritical nodal points
Vs, =0, Fi=0; Vs, =t 00, Fe=o0

nedal points
Vo, =—(—1) Vhao(x Vi—a) [(h—2)k]?,  Fa==Ye(x— 1PV
Vy,=— Vhae(xVh—ag), Fe=0
a saddle end point
V% = — Vhakt(x Vk —a), Fs=0

Here line g = g3, Vg, the corresponding point, and F3 a characteristic. In fact, the eq-

uation of one of the family of characteristics (a bunch of characteristics emanating from
point 4 forms andther family) is
(g—a)—1f

da -
== Vh
d Va vs(va——a)-}—][f((ux——a)*-{-va’—}]

If the line g = const belongs to this family, then values of functions corresponding to
this line must satisfy Eq. 3.22)
— kgt VA= VEau VE—a)  (+VTF for x>2, — VF for 2<2)

A direct check will show that V53 and F, satisfy (3.22).

N ot e. Statements that a line is a characteristic, or a free boundary are to be under~
stood as meaning that equations and conditions relevant to the neighborhood of point a =
=agy, B=0(a ~ a, and B are infinitely small magnitudes) are satisfied with respect to
their predominant terms,

A particular solution of system (3.16) satisfying the asymptotics for g +» 0 may be writ-
ten as follows

Vs 2 . 2a 2a + (K -I‘ 1) ‘75 1-k
F=[‘“" ”“2“] . (u+1)va[—':rz;;‘r]

. . a4k, {2+ (¢ + 1) v ]"?
V=0 = 06— zrryr, ) v | TEALE

201 —k) (e —1 - —
v=~—-:g—_}~_—1;—(_w-), a=VhaxVEk—a)

Values of 4 obtained by numerical calculations (4 > 0 for %> 2, and 4 < 0 for %< 2)
show that the absolute value of ¥y decreases for small negative g. Hence the integral curve
path is built up as follows (Eig. 4a and b): from point V3o + Fo corresponding to g = 0 (@ <
< ag) the curve runs towards the coordinate origin VS; =0, F, = 0 which corresponds to
g = oo, after which it reaches point ¥5, = £, F, = oo (the plus sign is for % > 2, and the

minus for # < 2) corresponding to g = 0 (a > a,). It will be readily seen that in this case
F =~ g3/ hence

(3.21)

dvy  (3.23)

1= ((x——(xo)’(""k’/k

therefore the line g = 0 does not correspond to the free boundary. Consequently, the point
corresponding to the latter is

Va,=VhaVk—a)/k Fy=0

From the infinitely remote point V5z' F, the curve reaches nodal point V;a. F4 along a
separate branch. Its direction at this point is given by
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dF 6h Vhag(x Vi — ) 3.24)

T =" E=BR—T(h—1) @
Since point Vg, Fg corresponding to the free boundary does not belong to the integral
curve (3.23), the solution has a weak discontinuity at point Vs 3’ F3 , which is admissible

as point V5., F; corresponds to the characteristic.
Point Vss, F is a saddle point. One of the saddle separatrices coincides with line F =

The second separatrix emanates from point Vss » Fg with slope

dF  w(1 —k)(x Vh— a0

= == 3.25
4V Vhagk[(h—1) k — h) 3.25)
and reaches point Vs, F3 tangentially to the direction of the common whisker
— 320h" (x V'R — o) (1342 — 34k + 28
dF 3okt (% V'R — ao) (13 34k 4+ 28) (3.26)

V= (h—2)(3h — 1) (h— 1) (10k — 14)

The separatrix u corresponds to the integral curve final segment. Values of ¥V, along
this segment may be derived by integrating the following Eq. {(particular to the second and

third of Egs. of system (3.16))
Fe _ !
dVy = T (e AV [2a+ (x+ 1)Vl (x—1)

dF
{eat e+ v F g+

dF
H[2F 20— 1) (a+ Vy] [(a + VY g A A1) kF}} (3.27)
As this equation is linear, and at point Vg , V, (V3. ) its derivative is

av, 1 N v dF
Wy =T ®F DVl k=1 {-reteinm av, T

dF
+ 2k (x — 1) % (a -+ V) V,,} a, (3.28)

hence V, is obviously everywhere finite.

Along the looked for integral curve the corresponding angle 3 becomes negative beyond
point V52 = oo, F2 =00, g=0{(a> ao). therefore we substitute in this area new variables
for g

i g ((1 — Qg)_i‘!k (3‘29)

By integrating the second of Fqgs. of system (3.16) along the final segment from Vg,, Fy
to Vss, F g, we obtain the value of go* which corresponds to the free boundary. This value
will obviously be negative and different from either zero, or'negative infinity, i.e. the free
boundary in the £7+plane is curvilinear for a > a;, and at the point @ = a,, 3= 0 tangent
to line A= 0 (Fig. 15),

Thus, the equation of the free boundary in the neighborhood of the point K may be ex-
pressed by Eqs. =0 fora<ag, and 3=g,* (a — ay)?/* when a > a,.

This work was discussed by the author with S.K, Godunov, and the numerous formulas
were checked by LL. Kireeva who had also carried out the integration of systems of ordin-
ary differential equations on a computer. V.5, Zhiltseva and M.A. Mindtseva have been of
considerable assistance in the formulation of this paper. The author wishes to express his
gratitude to all concerned.
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